

Table of Contents

- Introduction
- Real-time Issues in Dynamics Modeling
- Automation Solutions for Dynamics Modeling
- Real-time Issues in Atmospheric Modeling
- Real-time Issues in Wind Modeling
- Real-time Issues in Aerodynamics Modeling
- DSENDS Aerodynamics Modeling Architecture
- Real-time Issues for Terrain Services
- Instrument Terrain Server
- Summary
- Future Work

Introduction

- JPL is developing a high fidelity real-time EDL simulator called DSENDS.
- DSENDS is an extension of the JPL's heritage DARTS/Dshell++ Multi-Mission, Real-Time Spacecraft Simulator which has been used by various flight projects.
 - e.g. Galileo, Cassini, Mars Pathfinder, Stardust, SIM, SRTM, ST-6.
- Mars Smart Lander has identified DSENDS as a supporting real-time simulator.
- EDL-specific interfaces were developed for DSENDS.
 - i.e. interfaces to instrument and environmental models.
- Many systems engineering issues were confronted in the development of the DSENDS real-time simulator.

Real-time Issues In Dynamics Modeling

- Spacecraft dynamics modeling requires an automated method to transition between different configuration and transfer the s/c state between configurations.
 - DSENDS inherited capability to maintain the state of multiple s/c and the capability to "turn on" or "turn off" s/c models.

- Tether dynamics modeling requires an automated method to decrease the integration step size to capture high frequency dynamics.
 - Variable step integrators cannot be used since they require an undeterministic number of processor cycles.

Automation Solutions for Dynamics Modeling

• DSENDS State Machine satisfied automation needs.

- Provides mechanism to automate execution of user-functions during state execution and state transitions.
- Allows user-provided functions for testing of state transitions.
- Manages multiple, simultaneous s/c states.
- Readily defined and integrated within DSENDS.

Used in spacecraft dynamics modeling.

 User-defined transition functions would apply affine transformations between the state of the old configuration and the state of the new configuration.

Used in tether dynamics modeling.

- User-defined transition functions would shorten the integration step size of the fixed step integrator so that the high frequency dynamics were captured.
- Another user-defined transition function would length the integration step size when the dynamics were of sufficiently low frequency.

Real-time Issues in Atmospheric Modeling

Atmospheric models must vary with:

- Planetary inertial position and attitude
 (i.e. solar long., solar flux, and local time).
- Planetary surface (i.e. global circulation)
- Provide atmospheric conditions in a timely manner.
- Cannot use ODE-driven atmospheric models in real-time simulations.
 - Likely and unnecessary bottleneck.
- Interpolated and parametric atmospheric models will behave predictably.
 - Must quantify processor cycle usage of candidate models.

Real-time Issues in Wind Modeling

Wind models must vary with:

- Local time (planetary attitude)
- Altitude, latitude and longitude.
- Provide perturbing wind velocities in a timely manner.

Cannot use PDE-driven wind models.

- Also a likely and unnecessary bottleneck.
- Some wind effects may be modeled in the atmospheric model
 - e.g. Mars GRAM has global circulation

Real-time Issues in Aerodynamics Modeling

- Aerodynamic Coefficient models must span hypersonic to subsonic velocities.
 - Most aerodynamics models only operate in a subset of the required velocity domain.
- Leverage legacy codes (i.e. POST) with high fidelity aerodynamics models.
 - Must quantify processor cycle usage.

- Compute aerodynamic forces and moments in a deterministic number of processor cycles.
 - Total number of processor cycles depends on which atmospheric model and wind model are in use.

DSENDS Aerodynamics Modeling Architecture

- Decomposes aerodynamics into three tightly coupled models.
 - Atmospheric model
 - Wind model
 - Aerodynamics model
- Object-oriented model definitions.
 - Interfaces and functionality of each model are defined so that any model can be overloaded by another.
- Scale down processor usage by swapping in simpler models.
- Aerodynamics model communicates with the other two models and applies aerodynamic forces and moments to the vehicle.
 - Reports the vehicles inertial state and queries the other two models for atmospheric conditions.
- Wind models are optional.
 - Add perturbing wind velocities to wind velocity output of the atmospheric model.

Real-time Issues in Terrain Modeling for Instrument Simulations

Terrain Patches Needed: 1-8

DSENDS needs terrain in EDL simulations

- Compute height over local terrain.
- Provide terrain observed in an instrument FOV.
- Inputs for Laser Mapper (LIDAR) model & Phased Array Radar models.
- Evaluate lander kinematics and dynamics at touchdown.
- Visual aid.

Cannot preload an entire DEM data set at high resolution.

- e.g. 200 km by 100 km at 10 cm resolution is 2.0E+14 pixels.
- Terrain data is not available at high resolution.
 - May be a data set, synthetic or a convolution of synthetic and observed.
- "Terrain clients" must have timely updates appropriate for the current EDL system state.

Instrument Terrain Server

- Instrument Terrain Server provides required terrain services.
 - Shared memory communication (i.e. low data transport latencies).
 - Uses several shared memory buffers that contain overlapping terrain segments.
 - When an application requests data in an overlapping segment, buffers are switched in real-time to allow seamless access to terrain data.
 - Uses a predictive model in generating terrain data.
 - Predicts extent and resolution of terrain segments required by the simulation.
 - Uses knowledge of terrain generation times, data transport times and buffer sizes to sequence the generation, transport and uploading of terrain segments.
 - Manages use and re-use of buffers, the extent of overlap and some level of cache management to relieve the simulation from frequent transactions with the terrain generation and transport processes.
 - Terrain generation takes many seconds while the transport and buffer management process consume only fractions of seconds.

Summary

- Real-time issues were considered for:
 - Spacecraft and tether dynamics
 - Aerodynamics
 - Terrain services
- Have designed and implemented solutions
 - DSENDS State Machine
 - DSENDS Aerodynamics Modeling Architecture
 - Instrument Terrain Server

Future Work

- Quantify performance of DSENDS components.
 - Needed for a processing budget
- Populate DSENDS with models.
 - Spacecraft models (as architecture changes).
 - Atmospheric models.
 - Wind models.
 - Aerodynamics models.
- Validate and verify DSENDS models.

Backup Slides

Spacecraft Dynamics Modeling

- Significant challenge to manage transitions between different s/c configurations during EDL.
 - e.g. heat shield separation, parachute deployment, etc.
- Required automated methods of applying affine transformations between the s/c state in an old configuration to s/c state in a new configuration.
 - How to transfer rotational, translational and positional information between s/c configurations.
- Required automated methods for maintaining continuity and accuracy across transitions.
 - Insure that high frequency transients are captured by the simulator's integration scheme (i.e. temporarily decrease the integration step size).

Tether Dynamics Modeling

- Flight train is expected to have a triple bridle system that connects the reeled-out lander to the backshell.
 - Similar to Mars Pathfinder flight train.
 - Three flexible tether lines attach to the backshell and combine at one end to make a single confluence point.
- Each tether line requires a visco-elastic model and all the tethers are coupled via single-ended constraint equations.
 - Must capture the motion of the confluence point as the tether lines stretch, contract and go slack.
- Exhibits high frequency dynamics when the lander is initially released from the backshell.
 - Requires the simulator have small integration steps until the flight train system reaches a quasi-equilibrium with no high frequency dynamics.

DSENDS Aerodynamics Modeling

Aero. Coef. Models at different fidelity

Linearized Aero. Coefficient Model

• Interpolated Aero. Coefficient Model

LaRC Hypersonic Entry Model

Atmospheric Models

Fitted Atmospheric Profiles

• Mars GRAM (almost there)

Testing Wind Models on Flight Train

Chia-Yen Peng's Wind Model

Step Wind Disturbance

Aerodynamic Databases

Aerodynamic force & moment can be tabulated for different freestream and atmospheric conditions.

Typically, the freestream velocity and the aerodynamic force & moment are converted

- into dimensionless quantities:
 Freestream Mach Number, $M^{\infty} = \frac{|\vec{V}^{\infty}|}{\sqrt{\gamma RT}}$
- Angle of attack, α
- Coefficient of drag, $C_D = \frac{\left|\vec{D}\right|}{0.5\rho^{\infty}\left|\vec{V}\right|^2}$ Coefficient of lift, $C_L = \frac{\left|\vec{L}\right|}{0.5\rho^{\infty}\left|\vec{V}\right|^2}$
- etc.

Database entries acquired from CFD, DSMC or wind tunnel results. Database limited by its sampling and interpolation scheme.

Atmospheric Databases

Atmospheric databases are necessary for utilizing an **aerodynamic database**.

The **atmospheric database** is used to convert the freestream conditions into the dimensionless quantities stored in the **aerodynamic database**.

Once the lift, drag, etc. coefficients are extracted, the **atmospheric database** is used to convert those coefficients into **aerodynamic force** & **moment**.

Database limited by its sampling and interpolation scheme.

Wind Modeling

$$(\vec{V}^{\infty})_{A} = (\vec{V}^{S/C})_{A} + (\vec{\Omega} \times \vec{r})_{A} + (\vec{W})_{A} + (\vec{W})_{A}$$
Steady Variable

- Freestream velocity is the sum of the S/C and wind velocities
- Wind velocity has steady global and variable local components
 - Steady Global Wind Velocities
 - Planetary Rotation (<u>Ω</u> x <u>r</u>)_A
 - Global Wind Velocity (i.e. atmospheric circulation) (W)_A
 - Variable Local Wind Velocities
 - Local Wind Gusts (i.e. atmospheric circulation) (w)
- Local wind gusts can be modeled as a zero mean, Gaussian process
 - e.g. MER/MPF used Earth variable wind PSD since there is no Martian PSD

$$G_{..}(f) = (2.4 \times 10^{-4})f^{-2.4} + 0.01f^{-5/3}$$

OO Aerodynamics Model

OO Aerodynamics Model

DSENDS

Aerodynamics Use Case

UML Legend

→ input or output

capability

Note: The above describes a "black box."